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Abstract 

There is widespread interest in possible transformations to the electric power industry toward a more 
decentralized system of supply and response, and microgrids could be central to that transformation. In 
addition to improving power quality, reliability and resiliency, microgrids are also often cited as a means 
to provide macro grid services and integrate favored generation sources such as renewables. The actual 
use of microgrids, however, hinges on the “business model” through which real investors might deploy 
microgrid systems. We offer a tool for assessing business models based on the widely used Distributed 
Energy Resources Customer Adoption Model (DER-CAM) modeling framework and present three main 
findings. First, the microgrid literature is somewhat scattered in its insights partly because microgrids 
exist in many forms—they employ many different suites of technologies and operate under various 
business models. As such, we offer three “iconic” types of microgrids which align with forecasted market 
growth—commercial buildings, critical assets such as hospitals for which reliability is paramount, and 
large campus-sized systems—and report typical electric and thermal loads by month and type of day for 
each. Second, we find that optimal configurations for each of these three iconic microgrids leads to 
some deployment of renewables, but the main financial value in microgrid business investments is 
rooted in the potential to utilize natural gas. This finding contrasts sharply with most policy advocacy, 
which has focused on deployment of renewables and energy storage. Third, we find that business 
models are robust across uncertainty in numerous parameters. We identify those parameters that most 
affect business models—the price of natural gas, cost of carbon, electric tariff costs, and the cost of 
energy storage—and quantify their impact on investment cases and subsequent business models. We 
show that costs charged by the local utility and special incentives for preferred generation technologies 
such as renewables are likely to be the most important areas for microgrid policy intervention. 



This paper is distributed as a working paper for the purpose of discussion and comment. It has not 3 
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1. Introduction 53 

The electric industry is undergoing a transformation on many fronts—most strikingly, perhaps, in the 54 
character of the distribution system.  Many non-traditional entities are now influencing local balance of 55 
power supply and demand, thereby decentralizing power generation.  Technology has been a primary 56 
driver—the economics of distributed energy resource (DER) technologies have improved radically, such 57 
as through innovation in solar photovoltaic (PV) systems, smart metering, energy storage, fuel cells, 58 
microturbines, electric vehicles (EVs) and controllers that enable demand response and energy 59 
efficiency measures. 60 



In many jurisdictions, policy makers have enacted a host of energy regulatory policies and financial 61 
incentives that promote the growth and deployment of these technologies and that encourage 62 
participation in energy management by parties other than traditional utilities.  This role for policy has 63 
been particularly profound in areas where policy makers have coupled themes of grid decentralization 64 
with decarbonization (that is, the shift to a low-carbon energy economy by transitioning from fossil fuel 65 
power generation to renewable sources), where the need for higher grid reliability and resiliency has 66 
become acute, or both. 67 

The push for decarbonization stems from climate change and the need to stop global temperature rise—68 
the current goal is to limit that increase to two degrees Celsius of pre-industrial levels. That push has 69 
come on several fronts, one of which is emission reduction targets, both at the federal- and state-level. 70 
In the United States (US), the 2015 federal Clean Power Plan requires individual states to reduce carbon 71 
emissions from power plants. At the state-level, 20 states have set greenhouse (GHG) emissions targets 72 
as of 2015 [1]. California, for example, passed legislation (Assembly Bill 32) to reduce GHG emissions to 73 
1990 levels by 2020 and aims to do so in almost all economy sectors [2]. This legislation is connected to 74 
research on DERs and low-carbon microgrids (that is, microgrids that integrate high penetrations of 75 
renewables) as potential pathways to reach the reduction targets [3], [4]. 76 

Another front is utility-scale renewable power. As of 2013, 29 states have enacted a Renewable Portfolio 77 
Standard (RPS) or similar policy. These standards require energy suppliers, such as utilities, to procure 78 
and deliver a minimum fraction of energy from renewables. California, for example, recently increased 79 
its RPS from a 33 percent-by-2020 mandate to 50 percent-by-2030 [5], [6]. As with Germany’s 80 
Energiewende, policies aimed at promoting renewable energy sources more generally such as RPSs are 81 
driving growth of some of the same technologies that could make microgrids more viable economically 82 
[7]—such as energy efficiency, battery storage, and small-scale solar PV [8]. In California, RPS mandates 83 
are linked to new requirements for energy storage deployment that will further decentralize the electric 84 
grid [9]. 85 

The push for renewables is present at the distribution level as well. Numerous electric tariffs promote 86 
deployment of distributed generation (DG) technologies directly—for example through Net Energy 87 
Metering (NEM) and Feed-In Tariff (FIT) programs. NEM credits (at retail electricity rates) customers 88 
with preferred technologies for excess generation. FIT programs allow customers with DG to sell power 89 
to the local utility. Some utilities are actively promoting experimental and new tariffs that could lead to 90 
the same outcome [10]. That push includes thermal energy sources and combined heat and power (CHP) 91 
systems as well. For instance, the New York State Energy Research and Development Authority 92 
(NYSERDA) recently issued $100 million in incentives to CHP units that improve grid reliability [11].  This 93 
logic helps explain why densely settled urban regions [12], [13] as well as areas with high thermal loads  94 
[14], [15] have long had elements of microgrids in operation.  Indeed, the strongest business models for 95 
microgrids may lie with systems that are large enough to integrate electric and thermal loads 96 
efficiently—a finding that the present study will confirm.  Within district heating systems and policies, 97 
debates about scale, integration and ownership have unfolded in ways that are quite similar to the 98 
debates on microgrids [16]. In the United Kingdom, a special tariff aims to boost the use of 99 
decentralized, renewable heating sources—notably heat pumps [17]. 100 

Some policies target decentralization directly. In California, several groups are offering visions for a 101 
more decentralized power grid in which users actively participate in the wholesale market  [18], [19]. 102 
New York has adopted aggressive targets along with its Reforming the Energy Vision (REV) that will 103 
actively decentralize the power grid.  Indeed, many governments in the northeastern US are focused on 104 
supposed advantages of a decentralized grid that might be more resilient [20]–[22]—a need 105 



underscored by recent severe weather that caused billions in damage and widespread blackouts.  The 106 
New York University microgrid, for instance, remained electrified and heated post-Hurricane Sandy [23].  107 
In Europe, policy schemes support virtual power plants [24]. The More Microgrids project, supported by 108 
the European Commission, found that microgrids can be profitable under current market conditions in 109 
the European Union, but suggests a new regulatory framework for local energy trading that unlocks 110 
greater economic benefits of an electric grid with microgrids [25]. In Japan, microgrid deployment 111 
became an industry focus in the wake of the Fukushima earthquake and tsunami, which caused outages 112 
to most of eastern Japan [26].  Indeed, Japan’s recent Strategic Energy Plan [27] promotes distributed 113 
energy networks in favor of its historic use of large central generating stations.  114 

Together, these three trends—new power management practices, technological innovation, and 115 
policy—radically improve the economics of microgrids as tools that integrate DERs [28]–[32], thereby 116 
potentially opening new markets for grid-connected microgrids. Actual investment has followed this 117 
potential—microgrid installations are expanding rapidly and investment is slated to accelerate further in 118 
the coming decade [33]. As these patterns spread, the result could affect how grid operators and 119 
utilities manage the electric grid and plan infrastructure development. 120 

We focus on microgrids because they are tools that employ DERs to achieve flexibilities (namely the 121 
control of load and generation) that stand-alone DER technologies cannot—flexibilities which allow the 122 
microgrid to provide a host of benefits to adopters and to the macro grid alike.  They are thus 123 
emblematic of the current transformation to the electric industry. Whereas much of the discussion 124 
around grid decentralization has been hypothetical, the rise of microgrids is a real phenomenon—125 
making this suite of technologies particularly amenable to quantitative modeling tuned with data from 126 
real microgrid systems and forecasted market growth. We adopt the definition of the US Department of 127 
Energy (DOE), which defines a microgrid as “a group of interconnected loads and distributed energy 128 
resources within clearly defined electrical boundaries that acts as a single controllable entity with 129 
respect to the grid and that connects and disconnects from such grid to enable it to operate in both grid-130 
connected or ’island’ mode.” 131 

Though the emergence of microgrids is real and monitored closely, due to their novelty and high 132 
development cost microgrids have been implemented primarily where customers have a premium need 133 
for reliability and have not been particularly sensitive to rates—for example military bases and hospitals 134 
[34]–[36], where they can be linked to research enterprises such as university campuses [37], [38], and 135 
for remote loads that are too costly to serve by extending the macro grid [39], [40]. These conditions 136 
may be changing rapidly, however, driven by cost reductions in decentralized renewable energy 137 
technologies, rapidly improving economics of scale for batteries, and notably a favorable natural gas 138 
price [41]. 139 

As microgrids become viable economically, their development will hinge on the incentives for private 140 
investment. Microgrids must have financial returns that investors can appropriate.  Here we offer a 141 
framework for how those “business models” can be assessed.  The standard business model for 142 
microgrids rests on the ability to generate electricity, heating, and cooling services locally for a total cost 143 
less than utility service.  Following standard practice, we look at those total costs—the annual operating 144 
costs plus the amortized expense of the required capital deployment—for the first full year of microgrid 145 
operation.  146 

In section 2 we review the large and sprawling literature related to microgrids, focusing on modeling 147 
tools.  In section 3 we configure one of those tools, DER-CAM, to make it suited to the task of evaluating 148 
microgrid investment strategies and business models. We also re-calibrate that model with recent, real-149 



world data on performance of key technologies and market conditions such as the price of natural gas 150 
and cost of emitting carbon dioxide (CO2).  In that section we also present profiles for three typical 151 
microgrid configurations. The central contributions of this paper lie in the calibration of DER-CAM and 152 
the presentation of these three iconic microgrids that can help to standardize research in this field. In 153 
section 4 we present results that we discuss in section 5. 154 

2. Review of the Literature 155 

The literature on microgrids is diverse and fits broadly into two categories.  The first comprises the 156 
coherent and growing literature that presents models of the techno-economic performance of microgrid 157 
systems.  We see this literature as the core of the field and crucial to business model analysis.  Second is 158 
a more sprawling set of studies directly and indirectly related to microgrids—on pivotal technologies 159 
(e.g., storage) and policies (e.g., regulation) along with many case studies.  We examine each in turn. 160 

2.1. Review of modeling tools 161 

Microgrid modeling comprises several phases and is approached generally with two types of analysis: 162 
techno-economic analysis and power system analysis.  Here we focus on the former because it is central 163 
to understanding business models.  We note that other studies have reviewed the highly technical 164 
literature on physical power system design and network operations, and that numerous models have 165 
been developed to perform this analysis [42]–[46] (see also [47], which reviews several of these and 166 
power system analysis generally). 167 

Techno-economic models are designed to identify the optimal economic configuration of a microgrid.  168 
Doing that requires a technical component that allows for assessment of individual elements of the 169 
microgrid—such as gas turbines, reciprocating engines, fuel cells, CHP, solar PV, energy storage, and 170 
others—in an integrated system. They also have an economic component that optimizes energy 171 
transactions between the microgrid and macro grid to meet a specified objective, such as minimizing 172 
cost. These components have been formulated into numerous techno-economic models using a variety 173 
of optimization techniques [48]. 174 

In the published, academic literature two techno-economic models dominate: the Hybrid Optimization 175 
Model for Multiple Energy Resources (HOMER) [49] and DER-CAM [50]. Several publications review 176 
these tools systematically, for example [51] and [52].  Here we review both and then briefly look to 177 
other modeling literature and tools—including proprietary tools that are not extensively used by 178 
academics because the code is not publicly replicable and such tools are expensive to operate. 179 

2.1.1.  HOMER 180 

HOMER was developed initially by the US National Renewable Energy Laboratory (NREL), and 181 
development continues by HOMER Energy LLC. HOMER is used to determine the most cost-effective 182 
combination and capacity of technologies to meet electrical and thermal loads. Users run many 183 
simulations of specified configurations to identify the lowest lifecycle cost of the system and to study 184 
system sensitivities. HOMER can simulate grid-connected and off-grid systems; analyses of the latter are 185 
prevalent in literature. The system is technically accessible to new users and available to demo freely.  186 
That helps to explain the large size (perhaps 100,000 users) of the HOMER community. 187 



HOMER's use in literature is dominated by case studies—often of isolated (that is, off-grid) energy 188 
systems. These case studies examine several areas of microgrid implementation: for instance, the 189 
benefit of stand-alone hybrid energy systems for rural electrification [53]–[57]; the benefit of replacing 190 
conventional generation or grid-supplied electricity with renewable energy resources [58], [59]; 191 
comparison of renewable and fossil fuel-based microgrids [60], [61]; the benefit of installing a microgrid 192 
to forego grid consumption [62]; and evaluation of break-even thresholds for business cases [63]. These 193 
case studies typically present as central results the optimal microgrid configuration and operation, and 194 
compare the net present value of the microgrid relative to grid-supplied electricity or the cost of 195 
extending the macro grid to supply the rural community. 196 

2.1.2.  DER-CAM 197 

DER-CAM is an investment and planning tool for DER adoption in microgrids. It is used to design and 198 
simulate microgrids. The Grid Integration Group at the Lawrence Berkeley National Laboratory (LBNL) 199 
has developed DER-CAM since 2000 and development is ongoing. 200 

DER-CAM is a mixed integer linear program written in the General Algebraic Modeling Software (GAMS) 201 
language [64], a modeling system for optimization problems. The model’s objective function determines 202 
the lowest-cost combination of available DERs to supply the electricity, heating, cooling, and natural gas 203 
loads of a utility customer. Upon investment, the microgrid meets end-use consumption with energy 204 
purchases, on-site generation, or energy recovered on-site. DER-CAM first finds the optimal suite of 205 
distributed energy technologies that minimizes the total energy bill or emissions or combination 206 
thereof, and second determines the optimal operating schedule over the entire year so as to meet that 207 
objective. The model provides comprehensive accounting of investment costs in conventional, 208 
combined heat and power, and renewable technologies; energy transactions between the microgrid and 209 
macro grid; fuel consumption; and carbon emissions. Simulations capture one year and therefore also 210 
seasonal variation. The mathematical formulation of DER-CAM is presented in [65] and [66]. 211 

Key inputs to the model include utility tariff data, available DERs, and end-use loads. Outputs include the 212 
cost-minimizing combination and operation of distributed resources. Inputs are listed comprehensively 213 
in [67] and also included in the supplemental information. 214 

DER-CAM is technology neutral and thus can be adapted to a wide array of microgrid settings—making it 215 
unwieldy to configure but particularly useful in studies such as the present one where many parameters 216 
need adjustment to real world conditions. The model considers the technical specifications and costs of 217 
several distributed technologies: (i) a suite of conventional generators such as micro turbines, gas 218 
turbines, and reciprocating engines of various capacities—with and without thermal recovery, and 219 
fueled with natural gas, diesel, or biodiesel; (ii) thermal units such as direct-fired chillers, absorption 220 
chillers, solar thermal heating, heat pumps, and thermal storage; (iii) renewable technologies such as 221 
solar PV; and (iv) emerging technologies such as fuel cells, electric energy storage and EVs. The model 222 
considers load-based capabilities as well, such as demand response and load scheduling. 223 

DER-CAM exists in two primary branches: an investment and planning branch and an operations branch. 224 
The former determines the optimal suite and operation of distributed resources over one year, and the 225 
latter the optimal week-ahead scheduling for installed energy resources [68]. The investment and 226 
planning branch is most useful for analyzing business cases and is where we focus our attention.  227 

Initial development of DER-CAM is documented in [69], [70]. Later developments by LBNL have, notably, 228 
included enhancements to allow analysis of particular case studies and scenarios.  They include, for 229 



example, the addition of a carbon tax and its effect on microgrid CHP adoption [65], heat recovery [67], 230 
electric and thermal storage [71], power quality and reliability considerations [66], minimization of CO2 231 
emissions as a cost function objective [72], zero-net-energy building constraints [73], EVs [74], and 232 
building retrofits [75].  Others using DER-CAM have also systematically analyzed parameters in DER-CAM 233 
that affect microgrid economics, for example tariff structures [76], energy storage [74], and climate 234 
zones [77].  More recently, the modeling tool has been adapted to study the economic impact of EV 235 
integration in microgrids [78], the business case for ancillary service provision using electric storage in 236 
microgrids [79], and the economics of reactive power provision [80]. 237 

For our purposes, the adaptability along with extensive published record and open-source nature of the 238 
code are attractive features of the DER-CAM platform for academic research. 239 

2.1.3.  Other software tools 240 

In addition to HOMER and DER-CAM, other modeling frameworks also allow for techno-economic 241 
assessment.  RETScreen is a software package used to analyze the economics of renewable energy 242 
technologies and energy projects [81]. Though it boasts a large user base it is not particularly suited to 243 
the demands of microgrid analysis, though this may change as a more holistic, integrated assessment 244 
methodology is currently under development [82].  Commercial tools are available as well—for example 245 
DNV GL’s microgrid optimizer tool [83]—but are often proprietary and used in-house. Other tools have 246 
been developed to analyze individual microgrids, for example the dispatch optimization tool developed 247 
by Energy+Environmental Economics (E3) and Viridity for the University of California, San Diego (UCSD) 248 
microgrid [84]. 249 

2.2. Other studies related to microgrids 250 

In addition to models, which are the main interest for this paper, many other studies are relevant to the 251 
design, operation, policy support and future evolution of microgrids.  We see these falling broadly into 252 
four categories, each of which we illustrate briefly. 253 

First, there are empirical studies.  These include studies on overall trends in microgrid investment [24], 254 
[33], [85]—trends that we use to identify the characteristics of the iconic microgrids that we present 255 
here. The market for microgrids is expanding, forecasted to grow, and moving toward full 256 
commercialization.  North America is the leading market.  At present, installations at military facilities, 257 
campuses, and remote communities comprise the majority market share, but grid modernization and 258 
resiliency are opening new commercial markets oriented toward public assets and critical facilities [86], 259 
[87].  The majority of extant microgrids employ conventional generation (that is, fossil fuel-based), but 260 
the use of CHP and renewables is forecasted to increase, especially as microgrids emerge as tools to 261 
integrate renewables.  In addition to empirical studies focused on overall trends, there is empirical 262 
research focused on particular microgrids, notably individual case studies [84].  San Diego Gas & 263 
Electric’s (SDG&E)’s microgrid at Borrego Springs stands out as a microgrid system that combines 264 
elements of research and development with commercialization [88]. 265 

Second, many studies have focused on particular technologies that are pivotal to microgrids.  These 266 
include studies which survey generally the prevailing DERs that could be integrated in microgrids [38], 267 
[89], their costs and benefits [90], and adoption [91].  They also include independent studies of specific 268 
technologies, such as energy storage—for example the widely used EPRI analysis of battery storage 269 
technologies [92], [93], analysis of battery storage costs [30], and analysis of energy storage markets 270 



[94].  A substantial literature has also emerged around the special issues associated with remote, rural 271 
electrification and the opportunities for microgrids in solving the “last mile” problem for those systems 272 
[95]. 273 

Third, some studies have attempted to look at the larger grid as a whole system—thus inevitably 274 
including some attention to particular current or possible future components, such as ubiquitous 275 
microgrids and DERs such as rooftop solar PV systems.  Integration studies quantify challenges and 276 
impacts and how best to incorporate distributed resources into the electric grid [96], [97].  Other studies 277 
present visions for the “grid of the future”, where distributed resources and microgrids play a central 278 
role in a dynamic grid [19], [98]. 279 

Fourth are the many studies that look at regulatory issues and opportunities.  Several papers discuss 280 
regulatory barriers [25], [99]–[101]. In most cases current regulation supports a centralized model of 281 
generation and distribution—microgrids challenge this framework and so regulatory barriers to 282 
deployment are common. Discussion and assessment of the legality of microgrid ownership models—a 283 
potential first step toward developing systemic rules for adoption—is ongoing in several states, for 284 
example California [100], Maryland  [20], Massachusetts [102], [103], and New York [99]. Microgrid 285 
adoption is in some instances practicable already under current law—for example the single-property 286 
single-owner model that we analyze in the present study.  However, the boldest visions for microgrid 287 
deployment envision systems that would require transformative changes: new definitions and/or 288 
exclusions to electrical corporations, revisions to traditional exclusive franchise rights, access to public 289 
rights-of-way for laying wires and other microgrid infrastructure, and local retail markets.  For those 290 
reasons, there is momentum behind a greater push for transformative change to the current 291 
distribution system to one comprised, in part, of high penetrations of distributed generation and 292 
microgrids [19], [25], [98], [104]. 293 

3. Building a Tool for Assessing Business Models 294 

Building a tool for studying microgrid business models has required efforts on two fronts, which are the 295 
main contributions of this paper. First we identify the characteristics of prototypical microgrids aligned 296 
with forecasted market growth for microgrids. We term these iconic microgrids. Second, we recalibrate 297 
DER-CAM and customize it in ways that make it particularly useful for today’s market settings in 298 
California—while reporting those parameters in ways that allow for ready adjustment to other markets.  299 
We address each in turn here. 300 

3.1. Three iconic microgrids 301 

Within the US, the market for microgrids is nascent and dominated at present by military and campus 302 
installations. These are large systems covering many buildings and operated by a single owner. From 303 
2015-2020, forecasts suggest such installations will continue to constitute the majority of total microgrid 304 
capacity, but two other market segments are expected to grow as well: facilities that have particularly 305 
great need for reliability (for example, hospitals) and commercial buildings. Microgrids developed for 306 
the former, which include critical infrastructure, are forecasted to grow fastest among market sectors. 307 
The military and university campus market segments are forecasted to grow by 142 and 115 percent, 308 
respectively; the city/community and public institution segments, by 199 and 228 percent; and the 309 
commercial segment, by 94 percent [33].  310 



We create three iconic microgrids to capture these three existing and forecasted market trends. We 311 
term the three cases the large commercial, critical asset, and campus microgrids1. For each of these 312 
three types of microgrids we construct load profiles that consist of electric, space heating, water 313 
heating, cooling, and natural gas loads. In line with common regulatory rules for electric utilities, we 314 
assume microgrids are installed behind-the-meter within the boundaries of a single property and with a 315 
single owner (regulatory rules that constraint adoption to this framework are common to many 316 
jurisdictions [11]). Figure 1 presents the load profiles for a weekday in February along with annual 317 
energy consumption. A complete set of profiles is reported in the supplemental information.  318 

We use the US DOE data set of commercial reference buildings to create load profiles for the three 319 
iconic microgrids [105], [106]. This data set comprises hourly annual load profiles for electricity, electric 320 
cooling, electric heating, natural gas, and gas heating, and consists of sixteen building types that 321 
represent approximately 70 percent of all commercial buildings in the US. Thermal loads are available 322 
for sixteen locations encompassing sixteen climate zones—we use climate zone 3B-CA, which includes 323 
Los Angeles, California. Building types include offices, schools, restaurants, hotels, and a hospital, among 324 
others. 325 

The DOE data have been available since 2011. The Grid Integration Group at LBNL has used DER-CAM in 326 
combination with the DOE reference building data set to study the economic benefit of particular 327 
distributed technologies across multiple economic and climate conditions [107], [108]. For example, 328 
they analyzed thermal energy storage in four cities with different electric tariff structures and climates 329 
to determine factors that most impact the economics of investment [109]. Systematic studies such as 330 
these are valuable because they provide insight into adoption trends for specific DERs across a range of 331 
important parameters. The present work is similar in this regard. A central difference, though, is that we 332 
extend this type of analysis to microgrid business models generally, and focus on drivers of investment 333 
cases and trends in microgrid adoption rather than on specific technologies, electric tariffs, etc. The 334 
present work adds to the literature by aligning iconic microgrids with forecasted market growth. 335 

By combining the rich DOE data into three types of building clusters—each served by a microgrid—we 336 
hope to facilitate a common core of research and promote more systematic analysis of microgrids. We 337 
have checked the DOE data against real-world conditions at UCSD, which operates a large microgrid to 338 
supply electricity and thermal energy to the campus [37]. Monitoring systems for electrical loads within 339 
the microgrid are ubiquitous and acquired data has high resolution—typically one minute or smaller. 340 
Individual, room-level, building-level, and campus-wide loads are monitored. We use this abundance of 341 
data to verify the DOE reference building electric load profiles. 342 

                                                           
1
 Greentech Media distinguishes between five microgrid segments: military, university, city/community, public 

institution, and commercial. Each of our three iconic microgrids fall into one or two of these segments—the 
commercial building aligns with the commercial segment, the critical asset with the city/community and public 
institution segments, and the campus with the military and university segments. 



 

 
 

Figure 1: Load profiles are presented for a February weekday (top). The load shapes are representative 
of weekdays throughout the year. Weekend days have a similar base load but do not peak so 
significantly during the day. Annual energy consumption is presented for all end-use loads (bottom). 
Note variable y-axis scaling for the time series and constant y-axis scaling for annual energy 
consumption. 
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Large commercial building customers include, for example, large box stores like Walmart or Costco, as 344 
well as office buildings. These customers consume electricity primarily but may also have varying 345 
demand for heating and cooling. As such, CHP investments may not be preferable. Of the three, this 346 
class consumes the least energy but is the most common. We model the large commercial microgrid in 347 
DER-CAM using the medium office from the set of DOE commercial reference buildings. 348 

Critical assets include hospital complexes, community centers, or data centers. The critical asset class is 349 
defined by its high demand for reliability—a large portion of the load is deemed critical and must be 350 
maintained during outages. High capital costs for on-site generation are therefore required to reliability 351 
supply the peak critical load, which may be large relative to base load consumption. Distinct from the 352 
other two microgrids, the critical asset consumes thermal energy (heating and cooling) relatively 353 
constantly throughout the day and has the smallest load factor (the ratio of load at a given moment to 354 
the day’s peak load). Such load shapes favor CHP investments. We model the critical asset microgrid in 355 
DER-CAM as a hospital complex—that is, a hospital facility with other ancillary facilities. Quantitatively, 356 
we construct it as the sum of the hospital, quick-serve restaurant, and outpatient facility from the set of 357 
DOE commercial reference buildings. 358 

Campuses include college campuses or military bases. Campuses are geographically large and lay within 359 
a single ownership boundary.  Typically they have no public roads within the service territory since most 360 
US regulatory law prevents non-utilities from running power lines across public roadways. Consequently 361 
they comprise an aggregation of many residential, commercial, and industrial load profiles. The campus 362 
class has a large thermal demand, and of the three has the largest demand and volumetric consumption. 363 



We model the campus microgrid in DER-CAM as a college campus. Quantitatively it is the sum of the 364 
small office, medium office, two large offices, three stand-alone retail centers, three supermarkets, four 365 
midrise apartments, two primary schools, two secondary schools, one strip mall, one quick-serve 366 
restaurant, and one full-serve restaurant from the set of DOE commercial reference buildings. 367 

In general, the timing of the customer’s peak electric load, load factor, and magnitude of thermal loads 368 
drives the economic benefit derived from microgrid adoption. For example, load magnitude and shape 369 
may make solar PV adoption advantageous, while the combination of electrical and thermal loads may 370 
make CHP adoption advantageous. We recognize that the three iconic microgrids will not capture every 371 
commercial and/or industrial customer, but they do capture a majority of customers within microgrids 372 
segments with the most significant growth forecasts. Though each customer’s pattern of energy 373 
consumption is ultimately unique, by using two veritable sets of building load data we believe these 374 
microgrids represent the prototypical customer within the three important microgrid markets 375 
(commercial buildings, critical assets, campuses). 376 

3.2. Model parameterizations 377 

This section lists key parameterizations used to model the three iconic microgrids, which Table 1 378 
presents. We use DER-CAM version 4-4.1.1 and configure the models using present-day parameters for 379 
interconnection in California. We modify parameters to make the interconnection specific to the local 380 
utility, as well as those parameters that are most critical to microgrid business models: electric tariffs 381 
(which include volumetric, demand, and standby charges), natural gas price, cost of carbon, cost of solar 382 
PV, and cost of electric storage. We leave numerous parameters as defaults—for example, location-383 
based parameters (which are configured for California) such as ambient temperature and solar 384 
insolation, grid and technology emission rates, the cost and performance of conventional generators 385 
and thermal recovery, and the performance of energy storage. A full list of modified parameters is 386 
included in the supplemental information. 387 

The hourly time series of end-use loads—presented in part in Figure 1—consist of weekday and 388 
weekend days, which we assign using calendar year 2014. A typical month has 20-23 weekdays and 8-10 389 
weekend days. For generality we do not consider peak days. 390 

As is standard with DER-CAM, we model two customers types (each with the same set of loads) for each 391 
iconic case—a macro grid customer, who supplies all load by purchasing electricity and fuel from the 392 
local utility, and a microgrid proprietor, who invests in DER technologies to self-supply some portion of 393 
load. We model each microgrid as interconnected to the distribution system and take SDG&E as the 394 
local utility using the commercial tariff Schedule AL-TOU. That electric tariff structure, as is common 395 
across many utilities, imposes demand charges (non-coincident, summer on-peak, and winter on-peak) 396 
and volumetric charges (summer and winter on-peak, semi-peak, and off-peak). The volumetric charge is 397 
based on the total electricity consumption and the demand charge on the maximum power 398 
consumption. The microgrid proprietor invests in DERs that supply load with the goal of mitigating these 399 
tariff charges. 400 

The microgrid proprietor is in addition subject to two further tariffs: a standby charge per Schedule S 401 
and departing load charge per Schedule E-DEPART. The standby charge is a dollar-per-kilowatt charge 402 
based on the capacity of conventional generators installed within the microgrid—the charge is designed 403 
to reflect the maximum load that the microgrid might draw from the utility if all those local generators 404 
were to fail.  It can be substantial and, as we will show, often impacts the economically optimal 405 
microgrid configuration. Departing load is the portion of load for which the customer self-generates to 406 



replace grid purchases. Its associated charge (approximately 0.005-0.015 $/kWh) is small relative to 407 
other tariff charges, and moreover specific to the three investor-owned utilities in California [110]. For 408 
generality we neglect it. 409 

Several exogenous parameters are important for analyses of microgrid economics. We assume that the 410 
cost of capital is 7 percent—and use the same rate for discounting calculations. The price of natural gas 411 
varies by region and time of year, among other factors. We use a price of 8 $/mmbtu based on sales to 412 
commercial customers in California [41]. We use 12 dollars per metric ton carbon dioxide equivalent 413 
($/MT CO2e) for the carbon price based on the price of California Carbon Allowance futures [111]. 414 

DER-CAM contains an extensive database of conventional generators, including reciprocating engines, 415 
microturbines, and gas turbines—both with and without thermal recovery. Costs, performance, 416 
emission rates and efficiencies are considered. In the models, conventional generators are fired with 417 
natural gas. The database includes units in discrete sizes ranging between 60 and 1000 kW. The role of 418 
CHP, as we shall show, is particularly important for microgrids for its potential to increase energy 419 
efficiency. 420 

The cost of solar PV and electric storage is decreasing rapidly. With decreasing costs we foresee—in 421 
some instances—adoption of low-carbon microgrids based around these technologies. To capture this 422 
important trend, we use current costs for non-residential rooftop PV systems [29] and a projected cost 423 
estimate for electric storage. Our storage cost aligns with estimates of current and projected costs [30], 424 
[112], [113]. 425 

The models in the present study are conservative is many regards. We do not include several sources of 426 
other revenue—for example from net metering or incentive programs such as FIT programs , production 427 
tax credits, and investment tax credits. We neglect state incentives as well, such as the Self-Generation 428 
Incentive Program (SGIP) in California. 429 

Table 1: Select model parameterizations 430 

 Parameterization Units Source/Comment 

    
Tariff Parameters    
Tariff - - SDG&E Schedule AL-TOU, EECC 
Voltage service Primary -  
Standby charge 13.76 $/kW SDG&E Schedule S 
Departing load charge 0 $/kWh  
    

Market Parameters    
Interest rate 7 % Lower medium grade corporate bond rate 
Natural gas price 8 $/mmbtu Commercial retail price in California 
Cost of carbon 12 $/MT CO2e California Carbon Allowance futures 
    

DER Parameters    

Solar PV capital cost 2390 $/kWac-peak 
Solar Market Insight Report 2015 Quarter 
2 

Electric storage capital 
cost 

350 $/kWh 
Nykvist and Nilsson 2015; 
Economics of Load Defection by Rocky 
Mountain Institute, 2015; 



Energy Storage Study by AECOM, 2015 
    

Energy Revenue Sources    
Net energy metering No  Expiring July 1, 2017 

Feed-in tariff No  Exports and sales are restricted to 
develop a baseline business model based 
solely on avoided energy costs. Energy sales No  

    

Incentives    
Investment Tax Credit No  Incentives are neglected to develop a 

baseline business model based solely on 
avoided energy costs. 

Production Tax Credit No  
California SGIP No  
    

 431 

Parameterizations include also important constraints. For instance, the models constrain the area in 432 
which solar PV can be installed, which we term the solar PV space constraint. Assuming rooftop systems 433 
are installed, the available installation space depends on building size and the number of buildings. We 434 
use approximations based on real-world numbers. We note that this constraint often affects model 435 
results (solar PV is often invested in maximally), but we nevertheless include it. We also quantify the 436 
economic impact of removing it. 437 

The capability of a microgrid to improve reliability (by islanding to maintain power during macro grid 438 
outages) is a primary driver of forecasted microgrid market growth. Such improvements are typically 439 
monetized by assigning a value of lost load (VOLL), but estimates of VOLL are difficult, often general, and 440 
have large variance. One can prescribe a VOLL in DER-CAM, and to realize that benefit DER-CAM 441 
enforces an investment constraint—which we term the minimum investment constraint—that is closely 442 
related to the size and configuration that is needed for islanding and reliability that meets peak critical 443 
electric load, assuming one battery charge/discharge cycle per day and an average annual solar 444 
insolation. This constraint does not guarantee perfect reliability, nor does it guarantee the ability to 445 
island during all hours of the day and all days of the year. Rather, it approximates the investment 446 
required to island generally—an outcome designed to approximate the estimated microgrid 447 
configuration with reasonable DER capacities but with full appreciation that further analysis and 448 
modeling refinement would be needed when designing any particular system.  Because of this approach, 449 
standard in the literature, here we do not monetize reliability (negatively or positively) in the models. 450 
Nevertheless we do enforce the minimum investment constraint. 451 

4. Results 452 

DER-CAM computes the least cost combination of DERs (type and capacity) and the hourly operation 453 
over the first year of implementation. We term the optimal combination of DERs the optimal 454 
configuration and the hourly first year operation the optimal operation. Together, the optimal 455 
configuration and optimal operation comprise the optimal system.  456 

We run the model for a typical weekly load profile—which includes weekday and weekend profiles—for 457 
each of 12 months.  We make such calculations for two types of customers.  One is the microgrid 458 
proprietor—who adopts a microgrid and supplies end-use load with a combination of power generated 459 
on-site, thermal energy recovered on-site, and/or power and natural gas purchased from the utility.  The 460 



other, for comparison, is a macro grid customer, who supplies the same load profile entirely through 461 
purchases of power and natural gas from the utility. 462 

4.1. Baseline model runs 463 

We model a baseline case for each microgrid proprietor. The optimal configuration is given in Table 2, 464 
which distinguishes investment in conventional generators (fired with natural gas), renewables, energy 465 
storage, and thermal units that supply the thermal loads directly.  We also distinguish the use of CHP-466 
enabled generators—which supply power and thermal loads within the microgrid—because they can 467 
greatly improve energy efficiency and are thus often pivotal to microgrid systems. The supplemental 468 
information provides a detailed breakdown of investment by individual technology and unit. 469 

Table 2: Optimal microgrid configuration for the baseline model runs 470 

 Large commercial Critical Asset Campus 
 

Conventional generators    
Generators without CHP 150 kW 750 kW 4250 kW 
Generators with CHP - 1650 kW 6250 kW 
    

Renewables    
Solar PV 200 kW 1250 kW 3100 kW 
    

Energy storage    
Electric storage 230 kWh 20 kWh 850 kWh 
    

Thermal units    
Absorption chiller - 350 kW 1400 kW 
Cold storage 220 kWh - 3800 kWh 
    

 471 

Figure 1 presents the optimal operation for microgrid proprietors during representative winter and 472 
summer months (dispatch for all 12 months is presented in the supplemental information). The models 473 
invest in and operate DERs to mitigate demand and volumetric charges, the largest costs to the macro 474 
grid customer. In general, the aggregate capacity of the optimal configuration is sized to supply peak 475 
electrical demand—to facilitate islanding per the minimum investment constraint, peak load shaving, 476 
and to minimize volumetric charges by displacing almost all grid purchases. What differs across the 477 
three iconic microgrids is not the sizing of DERs relative to the peak load—instead, it is which DERs 478 
(conventional generators, CHP, solar PV, and electric storage) comprise the optimal configuration. Grid 479 
purchases play a small base role in some configurations and months. 480 



 

 

 
 

Figure 2: The optimal dispatch for representative winter and summer months for the three iconic 
microgrids—large commercial (top), critical asset (middle), and campus (bottom)—shows how the 
microgrid supplies the electrical load with a combination of grid purchases and on-site generation from 
conventional generators, solar PV, and electric storage. The microgrid load is denoted in solid black and 
the macro grid customer load in dashed black. The two are different because the microgrid consists of 
DERs that consume additional electricity—see, for example, electric storage in the large commercial 
microgrid. Electric storage is shown in green when discharging and as an adder to the macro grid 
customer load when charging. 

 481 

While the details of each configuration are complex, the broad patterns and highlights of each iconic 482 
microgrid configuration are as follows: 483 

 For the large commercial microgrid, conventional generators supply base load and solar PV 484 
supplies peak load. Electric storage further supplies peak load when solar PV output is 485 
unavailable, especially during winter evenings. Cold storage provides chilled water during off-486 
peak hours. The thermal demand is relatively small and so the model does not invest in CHP.  487 



 For the critical asset microgrid, base load is supplied by conventional generators, two-thirds of 488 
which is CHP-enabled to meet the relatively large thermal demand. An absorption chiller further 489 
supplies the thermal load via heat recovery. Solar PV supplies peak load and electric storage 490 
supplies a small amount of shoulder load between the on-peak and off-peak periods.  491 

 For the campus microgrid, base load is supplied by conventional generators, 60 percent of which 492 
is CHP-enabled to meet thermal demand. An absorption chiller further supplies the thermal load 493 
via heat recovery and cold storage provides chilled water during off-peak hours. PV supplies 494 
peak daytime load and electric storage further provides peak load when PV output is small or 495 
unavailable. 496 

 497 
The primary driver underpinning adoption is the potential to utilize relatively inexpensive natural gas. 498 
The models forego grid purchases and instead prefer on-site generation from conventional sources to 499 
supply the base electrical load. Gas prices are low, carbon emissions are comparable with grid 500 
purchases, and grid-supplied electricity in California (the source of the assumptions in Table 1) is 501 
relatively expensive during both peak and non-peak periods. Further, the combination of electric and 502 
thermal loads makes CHP adoption favorable. The critical asset and campus microgrids install CHP to 503 
integrate electric and thermal loads and thus increase system efficiencies. In doing so, they reduce 504 
electricity and fuel purchases for direct heating and cooling.  505 

The optimal investment case comprises solar PV for each microgrid. Peak load coincides with solar PV 506 
output, favoring its investment. Moreover, available space for solar PV constrains model results in two 507 
cases—for the critical asset and campus microgrids. The large commercial microgrid uses 33 percent of 508 
available space and is unaffected; the critical asset and campus microgrids use all available space. When 509 
unconstrained, the models invest in 40 percent (1750 kW constrained, 1250 kW baseline) and 177 510 
percent (8600 kW unconstrained, 3100 kW baseline) more solar PV, respectively. Such large solar PV 511 
installations are cost effective because of the large daily peak in load and the coincidence of peak load 512 
with solar noon. 513 

For each customer type we compute the total energy cost for the first full year of operation—presented 514 
in Figure 3 for microgrid proprietors and the macro grid customer who supply the same electric and 515 
thermal loads entirely through grid purchases. The two customer types are subject to different sets of 516 
competing costs. The macro grid customer pays electricity and gas charges per applicable tariffs (“tariff 517 
costs” and “fuel costs”). The microgrid proprietor pays the same charges as well as standby charges for 518 
on-site generation, in addition to the annual amortization for the capital investment needed to build the 519 
microgrid (“DER costs”).  DER costs include also microgrid operations and maintenance costs.  All 520 
customers pay carbon costs (“carbon taxes”), although those that buy electricity and gas from the grid 521 
pay those costs indirectly as part of their electric tariff. These costs are summed to calculate the total 522 
energy cost for each customer, and we find that in all cases microgrid adoption reduces that cost 523 
relative to the macro grid customer. 524 

   



Large commercial Critical asset Campus 
   

 

Figure 3: The disaggregation of the total energy cost is presented for the first year of operation for the 
macro grid customer and microgrid proprietor. Microgrid adoption significantly shifts the dispersion of 
costs—from tariff costs to DER and fuel costs. In doing so it reduces the total energy cost—by 14, 17, 
and 21 percent for the large commercial, critical asset and campus microgrids, respectively. Costs 
presented are normalized to the macro grid customer’s total energy cost. 

 525 

4.2. Simple sensitivities 526 

Following on the baseline models, we run numerous simple sensitivity models, in which we hold 527 
constant the optimal configuration from the baseline run, vary a single parameter, and permit the 528 
models to re-optimize operation; in these sensitivity studies the model does not re-optimize the 529 
generation mix, which we present in section 4.3. Many parameters affect the total energy cost of the 530 
microgrid, each with varying degree depending on the particular microgrid system. For example, the 531 
business model for a low-carbon microgrid will depend largely on the capital costs of solar PV and 532 
energy storage—costs which have real variance depending on, for instance, manufacturer, chemistry, 533 
and/or the type and location of the installation. Simple sensitivity models therefore help to quantify the 534 
robustness of the business model by quantifying the change in total cost to plausible variation in key 535 
parameters. 536 

In general, DER costs, tariff costs, and market parameters are key drivers of the total cost—DER costs 537 
vary over time, mostly declining with technological advances; tariff costs are updated often and prices 538 
and structures vary by utility; gas prices fluctuate and vary seasonally and/or geographically; and carbon 539 
costs are imposed jurisdictionally and vary. We run sensitivity models for a subset of these costs and 540 
parameters. Since the costs of specific DER technologies underpin investment we analyze the interest 541 
rate, capital and O&M costs of conventional generators, as well as the capital cost of solar PV, electric 542 
storage, and thermal storage. The costs of solar PV and electrical storage are falling relatively rapidly. 543 
We analyze the price of natural gas because it is volatile relative to other parameters such as tariff and 544 
DER costs and also because the optimal microgrid systems in section 4.1 consist primarily of gas 545 
generators. We choose the cost of carbon because it a key mechanism to achieve emission reduction 546 
and clean energy targets. Lastly, we choose the electrical load to capture load growth within the 547 
microgrid and thermal loads to capture a range of other climate zones in the US. We discuss the 548 
specifics of each in turn. 549 

We vary the interest rate -/+25 percent from the nominal rate of 7 percent, generating the range 5.25-550 
8.75 percent. 7 percent reflects a typical discount rate for lower medium grade (BBB- to BBB+) corporate 551 
bonds at the time of this publication; the sensitivity range further covers high-yield and upper medium 552 
grade bonds. 553 

We vary the cost of carbon from the nominal cost of 12 $/MTCO2e -100/+1000 percent (0-132 $/MT 554 
CO2e) to capture the 95th-percentile cost for the out-year 2020 (129 $/MT CO2e) per the US Office of 555 
Management and Budget (OMB) technical support document for the social cost of carbon [114]. At the 556 
time of this work the price of California Carbon Allowance futures was trading between 12 and 13 $/MT 557 
CO2e. 558 

We vary the natural gas price from the nominal price of 8 $/mmbtu -50/+100 percent (4-16 $/mmbtu). 559 
This sensitivity range is based on Annual Energy Outlook 2015 (AEO2015) forecasts for 2030 and 560 



captures the full range of projected Henry Hub spot prices (4 $/mmbtu in the “High Oil and Gas 561 
Resource” scenario and 8 $/mmbtu in the “High Oil Price” scenario) [115] while further allowing for a 562 
range of retail prices which vary according to local natural gas infrastructure spending. 563 

We vary the volumetric charge (using the 2013 average retail price for commercial customers in 564 
California as the baseline) -45/+15 percent  to capture the 5th- and 95th-percentiles for the average retail 565 
price of electricity for commercial customers across all 50 states and the District of Columbia during the 566 
period 2013-2033, assuming an average increase of 0.6 percent per year pursuant to the AEO2015 567 
“Reference case” scenario [115]. We project the price to 2033 to capture variation over the 20-year 568 
plausible lifetime of the microgrid. 569 

The EIA frequently publishes data on monthly average retail electricity prices (through the AEO) based 570 
on collected utility revenues and sales—a metric that amalgamates all utility charges—but does not 571 
report demand charges or standby charges singly. Surveying the range of demand and standby changes 572 
across utilities to generate a sensitivity range is not straightforward because those charges are closely 573 
tied to volumetric charges in the ratemaking process, and, further, it is unclear how to normalize utility 574 
charges against the volumetric charge. As such, for simplicity we vary the demand and standby charges -575 
45/+15 percent to align with the variation in volumetric charge. 576 

We vary the capital cost and O&M cost of natural gas-fired generators -20/+10 percent based on cost 577 
projections for 2010-2030 for small (<1 MW) generators. Capital costs for small reciprocating engines 578 
and microturbines are expected to decline 20 percent over the next 20 years due to technology 579 
advances and market competition, while the 10 percent increase considers potential emissions 580 
treatment equipment costs for compliance with more stringent emissions regulations  [116]. Though 581 
both capital and emissions treatment equipment costs vary by generator type and capacity, for 582 
generality we apply the -20/+10 percent sensitivity range across all generator types. 583 

We vary the capital cost of electric storage from the nominal cost of 350 $/kWh by -50/+300 percent 584 
(175-1050 $/kWh) to capture existing and projected market trends. The present-day hardware cost for 585 
battery storage ranges widely across manufacturers (and chemistries)—from 350 to >2000 $/kWh (lead-586 
acid may be as low as 200 $/kWh while lithium-ion may be 500 $/kWh) but are forecasted to fall sharply 587 
over the next 5-10 years [117]. For reference, as of 2015 Tesla Motors sells the larger of its two 588 
Powerwall stationary battery storage products for 350 $/kWh (though the offering excludes inverter and 589 
soft costs). 590 

The cost of thermal storage for hot and/or cold water (if adopted) is a negligible component of the 591 
upfront capital cost. The water heating load of the iconic microgrids is similarly negligible relative to the 592 
electrical load. Consequently we vary the cost of thermal storage nominally from the nominal cost of 50 593 
$/kWh by -20/+20 percent (40-60 $/kWh) to consider potential technology advances or unforeseen 594 
policy changes affecting thermal storage. 595 

We vary the turnkey cost of solar PV from the nominal cost of 2,390 $/kW by -50/+50 percent (1195-596 
3585 $/kW). The sensitivity decrease nears the DOE SunShot Initiative goal of 1 $/W installed cost, while 597 
the sensitivity increase nears the cost of smaller rooftop solar PV systems (5-10 kW), which are classified 598 
as “residential” and 3,740 $/kW in the 2015 Q1 SEIA US Solar Market Insight [29]. The 2,390 $/kW cost 599 
taken as the nominal cost assumes large rooftop installations near 200 kW. 600 

We vary the magnitude of the electrical load by -20/+20 percent to capture both potential load growth 601 
and energy efficiency measures implemented over the lifetime of the microgrid. The load growth 602 
scenario assumes an annual growth rate of 1 percent (per EIA forecasts) through the 20-year lifetime of 603 



the microgrid; the load reduction scenario assumes an annual growth rate of -1 percent due to adoption 604 
of energy efficiency technology advances. 605 

We vary the magnitude of thermal loads by -50/+50 percent to capture deviations from the nominal 606 
climate zone 3B-coast (a moderate climate that requires relatively little building heating and cooling and 607 
which covers the coast of southern California). Climate zones in the US range from 1A (hot and humid; 608 
for example Miami, Florida) to 8 (cold; for example Fairbanks, Alaska). 609 

Figure 4 presents the simple sensitivities for the three iconic microgrids. For each sensitivity model run, 610 
we hold fixed the optimal configuration from the baseline model run and permit the model to re-611 
optimize operation.  612 

 
 

Figure 4: Simple sensitivities are presented for the three iconic microgrids—large commercial (left), 
critical asset (center) and campus (right)—and show the change in total energy cost due to variation in 
model parameters. The red dashed line denotes the “parity point”—the cost increase that produces a 
total energy cost equal to that for the macro grid customer. We note that for some market 
parameters—such as the natural gas price and carbon cost—the parity point shifts because variation in 
those parameters affects electricity rates for the macro grid customer, though such shifts are not noted. 
The models do not converge in two instances, which are marked in purple—sensitivity models for the 
magnitude of electrical and thermal load for the critical asset microgrid do not meet the minimum 
investment constraint because the fixed configuration does not have the capacity to supply the increase 
in critical load. 

 613 

Several trends in the sensitivity results are common across the three microgrids. First, sensitivities to 614 
volumetric and demand charges are relatively low because the microgrids primarily self-generate. 615 
Second, sensitivities to the carbon cost and fuel price are high and exceed sensitivities to DER costs. In 616 
other words, plausible variations in operating costs (such as would be paid for carbon taxes and fuel) 617 
may drive the total energy cost to a greater degree than plausible variations in capital costs (cf. the 618 
relative magnitude of DER and fuel costs in Figure 3). Third, the sensitivity to the electrical load is large. 619 
During most hours the microgrids have reserve generation (conventional generators are sized to meet 620 
the peak critical load and do not run at 100 percent output during non-peak hours), which they use to 621 
supply the majority of load growth, thereby reducing further the total energy cost relative to the macro 622 



grid customer. This sensitivity is highly dependent on the volumetric charge and gas price—if volumetric 623 
charges are sufficiently low or gas prices high, the models will instead supply load growth with grid 624 
purchases. Note that variation (positive vs. negative) is reversed in Figure 4 for the electrical and 625 
thermal load sensitivities—load reductions cause cost increases relative to the base case microgrid 626 
customer. 627 

The range of total energy cost deviations from sensitivities shows that the business model is robust. 628 
Only extraordinarily high values for the carbon cost (approaching 100-120 $/MT CO2e) and fuel price 629 
(approaching 12-16 $/mmbtu) make microgrid adoption uneconomical. Yet high carbon taxes and fuel 630 
prices would also be expected to increase electric rates commensurately and move the parity point to 631 
the right. 632 

4.3. Strategically important uncertainties and business models 633 

We now turn to greenfield sensitivity analyses, in which we permit the models to re-optimize both the 634 
configuration and operation. This form of sensitivity analysis, which is computationally more intensive, 635 
begins with identification of four uncertain variables that have large strategic effects on the business 636 
model for microgrid adoption: natural gas price, electric storage cost, electric tariff charges, and carbon 637 
costs. We identified these four strategically important variables in several ways.  First, the simple 638 
sensitivity models indicate that the gas price and carbon cost are important to the business model 639 
because results are sensitive to these parameters. Moreover, markets are driving changes in these 640 
parameters—storage costs are declining rapidly and gas prices are inherently variable. Second, tariff 641 
charges ultimately drive the optimal configuration by favoring (or not) peak shaving and on-site 642 
generation—the configuration of the microgrids is dominated by attention to the need to mitigate 643 
volumetric and demand charges while considering standby charges. Moreover, tariff charges and 644 
structures vary generally by utility and region and so it is important to capture the range of charges 645 
employed across utilities and regions. Lastly, we look at the cost of carbon because its adoption might 646 
prove a key tool for decarbonization in California, and perhaps elsewhere in future years. 647 

4.3.1.  Natural gas price 648 

Figure 5 presents the total energy cost to the macro grid customer and microgrid proprietor for varying 649 
natural gas price ($4-16/mmbtu), and also the breakdown of energy provision by source for the 650 
microgrid.2 Justification for variation in the natural gas price is as discussed in section 4.2 for the simple 651 
sensitivity analyses. 652 

Both the macro grid customer and microgrid proprietor purchase fuel from the utility to meet the 653 
natural gas load; hence the total energy cost increases with natural gas price for both customers. 654 
Nevertheless, across the full range of gas prices, microgrids incur smaller net energy costs when 655 
compared with grid purchases—with the largest differences occurring when natural gas prices are low. 656 
The models invest in conventional generators when prices are low and, as prices increase, replace 657 
conventional generation with renewable sources and grid purchases, a transition that decreases the 658 
difference in total energy cost between the two customers. Beyond 9 $/mmbtu the large commercial 659 

                                                           
2
 We increase the volumetric charge as the natural gas price increases to account for a corresponding increase in 

natural gas-generated wholesale electricity. We increase only the generation portion of the volumetric rate and 
scale the increase by the fraction of wholesale electricity generated from natural gas plants in California (45 
percent at the time of this work). 



microgrid adopt a low-carbon configuration and thereby insulates itself from further increases in the gas 660 
price. The critical asset and campus microgrids, on the other hand, see shrinking net cost saving from 661 
microgrids as gas prices increase—they do not transition to low-carbon configurations, but rather revert 662 
to grid purchases. Higher gas prices make it harder for these microgrids to utilize one of the chief 663 
advantages of local production:  the on-site use and storage of thermal energy via CHP. 664 

For all microgrids there is a sharp transition from conventional generation to grid purchases. For the 665 
large commercial microgrid this transition occurs at 7-9 $/mmbtu; for the critical asset microgrid, at 11-666 
13 $/mmbtu; and for the campus microgrid, 9-11 $/mmbtu. These transition points have significant 667 
implications for the optimal configuration and subsequent business case. 668 
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Figure 5: The total energy cost is presented for the macro grid customer and microgrid proprietor (top). 
Costs are normalized by the total energy cost of the macro grid customer for the nominal natural gas 
price (8 $/mmbtu). Energy provision by source is presented for the microgrid proprietor across variation 
in natural gas price (bottom). Each bar is a separate model run and the remaining unfilled portion of the 
bar represents grid purchases. A black dot in the bar for solar PV provision denotes that solar PV 
installations are space-constrained. 

 669 

4.3.2.  Cost of grid purchases 670 

Volumetric and demand charges are the two tariff charges most important for distribution-level 671 
microgrids. The magnitude and daily variation in these charges often drives the business case for 672 
microgrids—for example large demand charges drive peak shaving schemes, and the same is true for 673 
high on-peak volumetric charges and load shifting. Figure 6 presents the total energy cost to the macro 674 
grid customer and microgrid proprietor for varying volumetric charge as well as the breakdown of 675 
energy provision by source for the microgrid. Volumetric rates are varied fractionally from 0.4-1.4 in 676 
increments of 0.1, where the unity fractional rate is the nominal rate in the electric tariff. All charges in 677 
the tariff are varied concurrently and justification for variation is as discussed in section 4.2 for the 678 
simple sensitivity analyses. 679 



We find that volumetric rates greatly affect the total energy cost and the optimal configuration. Further, 680 
as with variation in gas price, sharp transition points exist in which conventional generation and grid 681 
purchases are substituted. When volumetric rates are low (less than 50 percent of present rates), 682 
microgrid costs exceeds that of the macro grid customer, and there is no economic benefit to adoption. 683 
At rates greater than 50 percent of nominal, however, we observe an economic benefit that increases 684 
with increasing rates. For each microgrid, there are scenarios in which the microgrid self-generates to 685 
supply nearly 100 percent of load. Most notable, though, is the fractional volumetric rate at which this 686 
occurs. In all cases, electricity rates today make near 100 percent self-generation economical. Grid 687 
purchases become economical only when rates near 0.6-0.9 (depending on the microgrid), and business 688 
are more robust for the larger microgrids. 689 

The set of optimal configurations fits largely within two domains, separated by the transition point. For 690 
volumetric rates <0.9, the large commercial microgrid adopts a low-carbon configuration consisting of 691 
solar PV and electric storage, but adopts conventional generators for rates >=0.9, which remain central 692 
to the business model thereafter while displacing low-carbon resources. Similar transitions occur for the 693 
critical asset and campus microgrids—for rates 0.6-0.8 and 0.7-0.9 respectively. However the 694 
investment case for these microgrids remains with conventional generators. The range over which the 695 
models invest in gas generation is wide and reinforces natural gas technologies as the bedrock of 696 
investment cases.  697 
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Figure 6: The total energy cost is presented for the macro grid customer and microgrid proprietor (top). 
Costs are normalized by the total energy cost of the macro grid customer for the nominal volumetric 
charge (unity). Energy provision by source is presented for the microgrid proprietor across variation in 
volumetric charges (bottom). Each bar is a separate model run and the remaining unfilled portion of the 
bar represents grid purchases. A black dot in the bar for solar PV provision denotes that solar PV 
installations are space-constrained. 

 698 

Figure 7 presents the total energy cost to the macro grid customer and microgrid proprietor for varying 699 
demand charge as well as the breakdown of energy provision by source for the microgrid. Demand 700 
charges are varied fractionally from 0.4-1.4 in increments of 0.1, where the unity fractional value is the 701 



nominal value in the electric tariff. The demand charge is assessed monthly based on the maximum peak 702 
demand during the month. The macro grid customer’s relative cost thus increases linearly with 703 
increasing demand charge. We observe that peak shaving is a key component of the business model for 704 
all microgrids over the wide range of demand charges. For charges <0.6, the total energy cost to the 705 
microgrid typically exceeds that to the macro grid customer, and adoption is uneconomical. For charges 706 
>0.6, the total energy cost increases slightly and soon plateaus. Here the microgrids purchase electricity 707 
minimally and self-generate to supply close to 100 percent of demand, thereby reducing the demand 708 
charge to zero or close to zero in each case. 709 

For present-day demand charges (unity fractional demand charge), it is economical for each microgrid to 710 
peak shave and, further, self-supply nearly all demand. The critical asset microgrid, with its high 711 
premium for reliability, invests in conventional generators to supply critical load in the event of outages 712 
independent of the demand charge, and hence sees a business case for peaking shaving for demand 713 
charges 0.4-1.4. The large commercial and campus microgrids do not have so critical a need for 714 
reliability—they revert to grid purchases when demand charges are small. For these two microgrids, we 715 
observe a sharp transition (0.8-1.0 for the former, 0.7-0.9 for the latter) separating two modes of energy 716 
provision—grid purchases when demand charges are small and conventional generation when large. 717 
Present-day demand charges thus lie near this inflection point that separates two distinct business 718 
models—one based around investment in renewables and partial self-generation, and another around 719 
investment in convention generators and (close to) full self-generation. 720 
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Figure 7: The total energy cost is presented for the macro grid customer and microgrid proprietor (top). 
Costs are normalized by the total energy cost of the macro grid customer for the nominal demand 
charge (unity). Energy provision by source is presented for the microgrid proprietor across variation in 
demand charges (bottom). Each bar is a separate model run and the remaining unfilled portion of the 
bar represents grid purchases. A black dot in the bar for solar PV provision denotes that solar PV 
installations are space-constrained. 

 721 



4.3.3.  Cost of carbon 722 

Establishing a cost of carbon is one means to monetize emissions and incentivize investment in emission 723 
reduction technologies such as renewables and energy efficiency. To analyze the relationship between 724 
carbon cost and microgrid investment cases, we vary the carbon cost from 0-132 $/MT CO2e to capture 725 
129 $/MT CO2e, the 95th percentile social cost of carbon for the year 2020 [114], with results shown in 726 
Figure 83. 727 

We find that increasing carbon cost leads to divestment in conventional generators. The commercial 728 
microgrid supplies nearly 80 percent of load with conventional generation at a carbon cost of 0 $/MT 729 
CO2e and only 15 percent at 30 $/MT CO2e. For carbon costs >36 $/MT CO2e, conventional generators 730 
are not optimal; instead, solar PV and electric storage are preferred in conjunction with grid purchases. 731 

The critical asset and campus microgrids also divest in conventional generators in response to rising 732 
carbon cost; however, they increase grid purchases rather than transition to 100 percent renewables, 733 
due to the solar PV space constraint. In fact these two microgrids maximize investment in solar PV (up to 734 
the point where space constraints are binding) to facilitate peak shaving, irrespective of the carbon tax. 735 

   

   
Large commercial Critical asset Campus 

 

Figure 8: The total energy cost is presented for the macro grid customer and microgrid proprietor (top). 
Costs are normalized by the total energy cost of the macro grid customer for the nominal carbon cost 
(12 $/MTCO2e). Energy provision by source is presented for the microgrid proprietor across variation in 
the cost of carbon (bottom). Each bar is a separate model run and the remaining unfilled portion of the 
bar represents grid purchases. A black dot in the bar for solar PV provision denotes that solar PV 
installations are space-constrained. 
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3
 We increase the volumetric charge as the carbon cost increases to account for a corresponding increase in 

generation costs from fossil fuel power plants and subsequently the clearing price in the CAISO wholesale market 
and retail rates. We use AEO 2014 projections and compare the percent difference in economy-wide electricity 
generation costs between the “Reference case” and “Greenhouse gas $10” scenarios. We apply the difference as a 
percent increase to the generation portion (taken to be 7/16 in SDG&E’s service territory) of the volumetric 
charge. 



4.3.4.  Cost of electric storage 737 

Electric storage is widely considered a great enabler of microgrids, especially as regulators seek greater 738 
renewables penetration in the electric system. Storage costs are decreasing rapidly, and many believe 739 
low cost storage can enable widespread deployment of low-carbon microgrids. The point at which 740 
deployment becomes cost effective is an open question, however, which others have investigated [118]. 741 
To explore this important trend we reconfigure our models with varying electric storage cost—we use as 742 
a baseline a projected turnkey cost estimate (350 $/kWh) that aligns with estimates of current and 743 
projected energy storage costs over the next 5-10 years. We vary the electric storage cost 0-1150 744 
$/kWh, the justification for which is as discussed in section 4.2 for the simple sensitivity analyses. 745 
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Figure 9: The total energy cost is presented for the macro grid customer and microgrid proprietor (top). 
Costs are normalized by the total energy cost of the macro grid customer for the nominal electric 
storage cost (350 $/kWh). Energy provision by source is presented for the microgrid proprietor (bottom) 
across variation in the cost of electric storage. Each bar is a separate model run and the remaining 
portion of the bar that is unfilled represents grid purchases. A black dot in the bar for solar PV provision 
denotes that solar PV installations are space-constrained. 

 746 

The commercial microgrid adopts an increasing amount of storage as costs fall. Two transitions are 747 
salient in the set of optimal configuration. The first occurs when storage is first adopted, at 350 $/kWh, 748 
and the second occurs when the microgrid adopts a low-carbon configuration, at 200 $/kWh. With these 749 
transitions, the microgrid imports additional grid electricity and eventually supplies over 30 percent of 750 
demand with grid purchases. Even with storage costs <100 $/kWh, the microgrid need not invest further 751 
in storage—solar PV and storage plateau the demand charge and together achieve perfect energy 752 
arbitrage during on-peak periods; that is, solar PV and storage are sized sufficiently to supply the whole 753 
of the on-peak load during all on-peak periods throughout the year. 754 

The critical asset and campus microgrids also purchase more storage as costs fall, but never adopt low-755 
carbon configurations. Conventional generators remain the bedrock throughout. Even at 0 $/kWh, 756 
storage is used only to facilitate peak shaving, as is the case in the baseline model runs in section 4.1. 757 



The solar PV space constraint restricts solar PV installations in all cases, thereby restricting potential 758 
transitions to a low-carbon configurations, in which storage might store significant excess daytime 759 
generation from solar PV for nighttime discharge. 760 

5. Discussion 761 

Microgrids can in principle confer numerous benefits to all stakeholders (the owner, distribution system, 762 
and society)—by reducing energy costs for the owner, providing grid services to the distribution system, 763 
and reducing system emissions for society. Each has value and much of the work on DERs and microgrids 764 
in political science and economics is focused on how to monetize them. In this work we evaluate 765 
microgrid business models in a conservative manner by considering only the economic benefit derived 766 
from the microgrid customer’s avoided energy costs and do not consider additional revenue streams 767 
from incentives, rebates, credits, participation in ancillary service markets, utility service agreements, 768 
improvements in power quality and reliability, or emissions reductions—quantifying those benefits is a 769 
topic for future research. We also neglect important demand-side flexibilities, such as demand response 770 
and load scheduling, that improve microgrid economics.  771 

Though from an economic standpoint these models are conservative because we disregard potential 772 
revenue streams and flexibilities, technical simplifications are present in the models—concerning solar 773 
PV and energy storage, in particular—which may decrease the total energy cost reductions achieved by 774 
the three iconic microgrids. First, solar irradiance profiles, as is typical in planning models, assume clear 775 
sky conditions. Solar PV power output captures seasonal variability (across months) but not day-to-day 776 
or intraday (that is, hourly) variability. The models have an hourly timestep and cannot capture sub-777 
hourly variability either. This has implications for demand charge mitigation and energy storage 778 
investment—the lack of variability in these models overestimates demand charge savings and decreases 779 
the need for storage and hence the value of storage to the microgrid. This affects, most notably, the 780 
low-carbon configurations we observe in some instances for the large commercial microgrid but affects 781 
the core result—that business models are gas-based and robust—less so. The bias toward less storage 782 
caused by the lack of variability could be corrected using more granular operational models or power 783 
system analysis tools, both of which are outside the scope of this work however. The development of 784 
operational models that can be used in concert with investment and planning models is a potential topic 785 
for future research. Second, loads and solar irradiance are deterministic parameters in the models. This 786 
implies, in essence, that microgrid operators have perfect forecasts, which again overestimates demand 787 
charge savings and reduces the need for and value of electric storage. 788 

Economic conservatism and technical simplifications aside, we find for each iconic case that microgrid 789 
adoption reduces the total energy cost relative to the macro grid customer—and hence the business 790 
case for each iconic microgrid can be made based on reducing energy costs alone. Though in some 791 
scenarios microgrid adoption is uneconomical (for example, very low electricity or demand charges, 792 
such as in Figure 6 and Figure 7), adoption is for the most part economical. We find also that business 793 
cases are robust across uncertainty in key parameters such as DER costs, tariff rates, natural gas prices, 794 
and carbon costs.  While these uncertainties do not undermine the case for microgrids they do have a 795 
huge impact on the optimal microgrid configuration—which, as a practical matter, is what investors 796 
actually care about.  Across all microgrids the majority of power and thermal generation comes from 797 
conventional generation technologies—notably gas.  For all iconic cases and across a wide range of 798 
uncertainties, conventional generation is the foundation of DER investment because these units mitigate 799 
the demand charge by peak shaving during peak hours and also reduce the volumetric charge by 800 
displacing grid-imported electricity during all hours. Solar PV and electric storage are viable and 801 



important, and indeed optimal in most cases, but serve to supplement natural gas investments rather 802 
than facilitate low-carbon microgrids. 803 

One implication of these findings is that while utilities stand to lose business in electric sales they could 804 
gain (albeit a less lucrative) business in selling natural gas.  Another implication is that the results are 805 
robust at current gas prices, but if gas prices were to climb to >12 $/mmbtu then the case for gas-driven 806 
microgrids would be much harder to sustain, in particular when it is infeasible to transition to 807 
renewables-based configurations (as we observe for the larger two microgrids).  808 

Microgrids generate a large number of externalities (positive and negative) on electric grid operators 809 
and more broadly on society. Those externalities define roles for policy intervention. Beyond the 810 
internal costs and benefits, microgrids have larger externalities on utilities and on society more 811 
generally—especially if built and operated at large scale. The standard logic for policy intervention 812 
begins with identifying such externalities and then correcting market failures—such as with taxes and 813 
regulation to limit negative externalities and subsidies to reward positive spillovers.  Devising methods 814 
for assessing those externalities is an important topic for future research, in particular two that are likely 815 
to be important for microgrids:  (i) the externalities (positive and negative) that private microgrids might 816 
impose on utilities responsible for maintaining the distribution grid to which a microgrid is 817 
interconnected, and (ii) the positive externality to society that a microgrid might have on reducing 818 
emissions of carbon dioxide, the main human cause of climate warming, through higher efficiency and 819 
greater use of renewables. 820 

6. Conclusion 821 

In this paper we analyzed business models for three iconic microgrids in southern California using the 822 
microgrid optimization model DER-CAM. Model parameterizations are generalized where possible so as 823 
to widen the applicability of results. The three iconic microgrids are created using DOE reference 824 
building data sets for commercial buildings and align with forecasted microgrid market growth. 825 

In section 2 we review the sprawling literature on microgrids, focusing on software tools that have been 826 
developed to model microgrids, but including also empirical studies on microgrids as well as studies 827 
pertaining to technologies, the electric grid, and regulatory issues and opportunities. The literature is 828 
expansive but focuses mostly on technical aspects of microgrids and hence lacks systematic research 829 
into microgrid business models, a gap which this paper seeks to fill. 830 

In section 3 we identify three classes of utility customers—large commercial buildings such as offices or 831 
box stores, critical assets such as hospitals, and campuses—based on projected growth for these 832 
microgrid markets. These customers are particularly suited to host microgrids because of their load 833 
shape, capability to integrate various DERs, and footprint within a single boundary. We term these 834 
classes iconic cases. We constructed data sets of end-use loads for these iconic customers which are 835 
robust so as to serve as the starting point for future microgrid studies of this nature. 836 

We used the microgrid model DER-CAM in section 4 to simulate microgrid adoption and operation for 837 
the three iconic cases, which we discuss in section 5. We introduce the concept of a macro grid 838 
customer and microgrid customer—the former supplies demand using grid purchases; the latter, with a 839 
combination of grid purchases and on-site generation. We find for each iconic case that the optimal 840 
microgrid system reduces the total energy cost relative to the macro grid customer and that business 841 
cases are robust across key parameters. 842 



We reiterate the notion that microgrids can benefit the microgrid owner, distribution system operator 843 
or utility, and society concurrently. Microgrids facilitate energy cost reductions, help integrate 844 
renewable energy sources, and can provide a host of services to the local distribution system. In theory, 845 
these benefits could be spread equitably among stakeholders and maximized with correct policy 846 
measures. This paper demonstrates how owners can benefit from microgrid adoption but gives no 847 
regard to society or the utility. Society benefits when microgrids reduce system-wide emissions; the 848 
utility, when microgrids provide grid services. Future work that demonstrates how and when these three 849 
objectives—energy cost reductions to the microgrid owner, net emissions reductions, and grid service 850 
provision—can be achieved equitably is a logical next step in the development of regulatory and 851 
business models for microgrids. 852 
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